- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cai, Wenshan (2)
-
Goswami, Anjan (2)
-
Kim, Andrew_S (2)
-
Lee, Kyu‐Tae (1)
-
Raju, Lakshmi (1)
-
Taghinejad, Mohammad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Physical processes involving hot electrons, including their generation, transport, injection, and relaxation, have been an extensive area of research. The most widely utilized method for actuating the creation of hot electrons involves the excitation of plasmonic modes followed by their non-radiative decay, channeling the energy into these energetic carriers. Since plasmonics has already evolved into a mature field of scientific exploration, active plasmonic devices serve as an ideal platform to study hot-electron physics. In this Perspective article, we will provide the reader with a comprehensive outline of the physics underlying hot-electron dynamics. Emphasis will be placed on the characteristic timescales involved with the lifecycle of hot electrons, the generation and decay mechanisms of surface plasmon-induced hot electrons, and the material platforms suitable for such a study. Then, we will move on to discuss different temperature models used to explain the evolution of hot electrons and the changes in the optical properties of the materials they are generated in or injected into. Finally, we will focus on some of the interesting optical phenomena occurring at ultrafast timescales mediated by hot-carrier dynamics. Such a discussion is expected to incorporate valuable insights into our understanding of the synergistic relationship between hot-electron dynamics and active plasmonics, thereby paving the way for novel applications involving optoelectronics and energy conversion.more » « less
-
Kim, Andrew_S; Taghinejad, Mohammad; Goswami, Anjan; Raju, Lakshmi; Lee, Kyu‐Tae; Cai, Wenshan (, Advanced Science)Abstract Ultrafast optical switching in plasmonic platforms relies on the third‐order Kerr nonlinearity, which is tightly linked to the dynamics of hot carriers in nanostructured metals. Although extensively utilized, a fundamental understanding on the dependence of the switching dynamics upon optical resonances has often been overlooked. Here, all‐optical control of resonance bands in a hybrid photonic‐plasmonic crystal is employed as an empowering technique for probing the resonance‐dependent switching dynamics upon hot carrier formation. Differential optical transmission measurements reveal an enhanced switching performance near the anti‐crossing point arising from strong coupling between local and nonlocal resonance modes. Furthermore, entangled with hot‐carrier dynamics, the nonlinear correspondence between optical resonances and refractive index change results in tailorable dispersion of recovery speeds which can notably deviate from the characteristic lifetime of hot carriers. The comprehensive understanding provides new protocols for optically characterizing hot‐carrier dynamics and optimizing resonance‐based all‐optical switches for operations across the visible spectrum.more » « less
An official website of the United States government
